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LONG-TERM GOALS 
 
Previous work has shown that sound penetration into sandy sediments at low grazing angles is 
enhanced when ripples are present on the seafloor. In addition, ripples may change effective seafloor 
roughness and cause strong wave/current attenuation. The long-term goal of our research program is to 
create broad scientific knowledge that underpins the development of predictive tools for ripple 
dynamics and benthic transformations under variable wave forcing. The main purpose is to better 
understand the genesis, temporal and spatial evolution and decay of small-scale ripple morphology on 
sandy seafloors in shallow waters for homogeneous as well as heterogeneous sediments. The principal 
approach is to identify, investigate and parameterize critical hydrodynamic processes and parameters 
that affect ripple dynamics and transformations using laboratory experiments, theoretical analyses and 
numerical simulations. 
 
OBJECTIVES 
 
The near-term objectives of our research are to: (i) study the dynamics and morphology of 
symmetric/asymmetric ripples generated under variable waves forcing; (ii) investigate the genesis, 
evolution, dislocations and decay of ripples under weak oscillatory-flow and turbulence conditions; 
(iii) study segregation processes that are frequently observed in field situations but practically ignored 
in laboratory/theoretical studies; (iv) develop models and parameterizations for ripple formation, 
growth, transformation and decay under variable forcing; and (v) verify the models developed using 
laboratory data and available field observations. 
 
APPROACH 
 
A comprehensive laboratory experimental and theoretical research program was conducted to 
investigate the dynamics of sand ripples under conditions that are close to natural environments. The 
main components of the program were to: (i) measure, using small-scale followed by larger-scale 
experiments, the spatial variability of ripple morphology under oscillatory flow and shoaling waves 
that are typical of coastal waters; (ii) develop models/parameterizations for ripple morphology 
including sediment sorting in sand mixtures; and (iii) extrapolate laboratory findings, using appropriate 
non-dimensional parameters, to oceanic conditions with the aim of providing guidance for the 
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interpretation of field data. The emphasis was on improving physical understanding and quantitative 
predictive skills of flow around ripples, ripple morphology and sand sorting. 
 
WORK COMPLETED 
 
Significant progress has been made during the course of our research program, which includes the 
development of a hierarchy of ripple dynamics and scour/burial models based on laboratory, 
theoretical and numerical work [1-9]. In FY 07, our research focused mostly on: (i) geometry of ripples 
under asymmetric shoaling waves, (ii) sediment segregation in bimodal sand mixtures, (iii) ripple 
dynamics and bed transformations under variable wave forcing in bimodal sediments, (iv) decay of 
ripples under weak forcing or/background turbulence in homogeneous sediment environments. A large 
wave tank with shoaling waves along a sandy slope (see, e.g., [2,3]) and a smaller tank with an 
oscillatory sand rig (see [10,11]) were used in experiments. Quantitative data were obtained using 
three-component acoustic Doppler Velocimetry (ADV), a high-precision Laser Displacement Sensor 
(LDS) and a high-speed (500 f/s) video camera connected to Particle Image Velocimetry (PIV). To 
reduce the effect of sediment particles on PIV measurements, small nylon micro spheres illuminated 
by an IR laser were used (see examples in Figs. 1 and 2). 
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Fig. 1. Typical PIV images (a-d) of the vorticity field (different colors) in a weak oscillatory flow aloft 

decaying ripples at different flow phases. Large black arrows show the background flow magnitude and 
direction. Vorticity scale is ± 22 s-1. Flow dynamics here closely resemble oscillatory flow around bottom 

cylinder [12,13]. 
 

 
Fig. 2. Typical vorticity/velocity fields (left) and a streak photograph (right) in a turbulent flow induced above 

the ripples. Vorticity scale ± 1 s-1. Note that the vorticity scale here is enlarged 22 times from that of Fig. 1. 
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The results obtained are described in [5,10-12], and the main FY 07 findings are summarized below. 
 
RESULTS 
 
(i) Under linear symmetric forcing, the sand ripples are symmetric, but under nonlinear shoaling waves 
the forcing is asymmetric, as are the ripples. Asymmetric ripples demonstrate similarity behavior, 
irrespective of the values of parameters used in the experiments. A model was developed to explain 
this behavior. A “universal” ripple profile was proposed and heuristically explained [5]. 
 
(ii) Characteristic segregation patterns in bimodally distributed sediments (Fig. 3) were identified and 
explained [10-12]. Although initial segregation of the fine sediment fraction mostly occurs in ripple 
troughs, segregation on ripple crests could be seen over time (Fig. 3a). 
 

(b) (a) 

 
Fig. 3. Top view (a) and oblique view (b) photographs showing typical sediment segregation patterns in a 

bimodal mixture (blue – fine, brown - course sediment). 
 
(iii) A general analysis shows that for a bimodal sand mixture the most important parameter is the 
effective grain size, d*, which is a suitably defined rms value of grain diameters in the mixture that 
takes into account the number of particles of different sizes in a unit mass of mixture [11]. Using this 
parameter, our previous models for ripple evolution under variable forcing in homogeneous sediments 
[13] were modified and tested in experiments with bimodal sediment (see, for example, Fig. 4). 
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Fig. 4. Evolution of ripples of length L and height h in homogeneous and bimodal sediments under variable 
flow forcing. Symbols - measurements, solid lines – modified model estimates for bimodal mixture 

 
(iv) The two main mechanisms responsible for ripple degradation are (i) weak forcing, below a 
threshold of which ripples may decay [14], and (ii) background turbulence and disturbances, for 
example, bioturbation [15,16]. Both of these mechanisms were studied. 
 
Results show (see example in Fig. 5) that under weak forcing, the ripple height, h, decays with time t 
in accordance with a diffusion model with constant (with time) effective sediment diffusivity, i.e. 
K0(t)=constant, viz. 
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Fig. 5. The time decay of the dimensionless ripple height h/h0 under weak oscillatory flow for two 

experiments (a, b) with different forcing (specified by frequency ω and amplitude ε of oscillations). Symbols – 
measurements, dashed lines - predictions (1). The flow was applied on established ripples when h/h0=1. 

 
 
(v) Turbulence induced by an oscillating grid or a perforated plate was used as a source of controlled 
external turbulence on ripples. Kindred turbulence has been studied previously [17] and thus only a 
selected number of experiments (for example, see Fig. 2) was needed to confirm established 
parameterizations for turbulence quantities. In experiments with turbulence, results qualitatively 
similar to those obtained for weak oscillatory flows were documented (see Fig. 6). In the former, 
however, the initial decay of ripples was much faster than that at later times (Fig. 6), thus defying the 
above model based on a constant effective sediment diffusivity. 
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Fig. 6. Ripples decay under oscillating grid (a, b) and perforated plate (c) turbulence. Turbulence (rms) 
velocity u near the ripple crests - 1.1 (a, c) and 2.2 cm/s (b). Symbols – measurements, solid line – model 

predictions (2). The turbulence was applied on established ripples when h/h0=1. 
 
To explain the observed behavior, therefore, a model with variable diffusivity was advanced. In this 
model, as a first step, the evolution (decrease) of ripple steepness, h/k, with time was considered using 
a parameterization of the form 0 ( )nK K kh=  (K0-initial diffusivity, n>0-empirical coefficient). This 
model gives an exact solution of the form, 
 
 2

0 0( , ) ( ,0) 1 1 ( )n nnh x t h x nK k t h+= + .    (2a) 
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To parameterize K0 and n, we used following semi-empirical dependences: 
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( =0.5 cm/s, C1=10-3, C2=4.2) and solid lines in Fig. 4 are plotted based on (2). The agreement is 
highly satisfactory, lending support for the parameterizations employed for effective diffusivity. 

cru

 
The validity of (2) was also verified in experiments conducted by applying both weak oscillatory flow 
and turbulence on established ripples. Comparisons of model estimates with ripples decay 
measurements show a satisfactory agreement, and in particular it was found that in the parameter range 
studied both effects should be taken into account at large times. Note that field observations from SAX 
‘04 experiments give the estimate [15,16] K0=(1-20)x10-5 cm2s-1, which is in agreement with 
predictions based on laboratory work for weak oscillatory flow, K0=(1-2)x10-5 cm2s-1. Our predictions 
based on experiments with background turbulence also yield initial values of K0 [=(4-8)x10-4 cm2s-1]. 
 
IMPACT/APPLICATIONS 
 
Ripple dynamics and sand segregation under variable forcing typical of the oceanic coastal zone are 
not well understood from a fundamental point of view nor have they been modeled based on 
phenomenological and dynamical arguments. Our work has made significant advances in this regard 
by utilizing integrated laboratory and theoretical/numerical approaches. 
 
TRANSITIONS 
 
We interacted with the field experimental groups of the University of South Florida and Woods Hole 
Oceanographic Institution in comparing their field results with predictions based on laboratory results. 
In closing out our mine burial research conducted under the previous grant, in FY07 we have 
compared laboratory results of scour rate, object burial and flow regimes with operational mine burial 
models: WISSP, NBURY and DRAMBUIE. The mine burial regime diagrams and associated 
formulations have been transitioned to the Mine Burial Expert System development group at 
JHU/APL. Experimental data, models and parameterizations developed under this project are being 
well used by the research community (more than 60 journal citations). 
 
RELATED PROJECTS 
 
The PIs are unaware of laboratory projects conducted elsewhere on the decay of ripples. Studies on 
sediment segregation on ripples are also sparse, and the PIs are aware of only three papers on this topic 
(Foti E. and Blondeaux P., Coastal Eng., 25, 237, 1995; Caps H. & Vandewalle N., Physica A, 313, 
357, 2002; Rousseaux G., Caps H. & Wesfreid J.-E., The Eur. Phys J. E, 13, 213, 2004). 
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